Formal Modeling of Airport Security Regulations
using the Focal Environment

David Delahaye
CEDRIC/CNAM, Paris, France

David.Delahaye@cnam. fr

Jean-Frédéric Etienne
CEDRIC/CNAM, Paris, France

etiennje@cnam. fr

Véronique Viguié Donzeau-Gouge
CEDRIC/CNAM, Paris, France

donzeaul@cnam. fr

Abstract

We present the formalization of regulations intended to
ensure airport security in the framework of civil aviation.
In particular, we describe the formal models of two stan-
dards, one at the international level and the other at the
European level. These models are expressed using the Fo-
cal environment, which is an object-oriented specification
and proof system. In addition, we show that these models
are correct and complete thanks to the Zenon automated
theorem prover, which is the dedicated reasoning support
of Focal. Finally, we propose an automatic transformation
of Focal specifications to UML class diagrams, in order to
provide a graphical documentation of formal models for de-
velopers, and in the long-term, for certification authorities.

1 Introduction

Many human activities are controlled by regulations and
standards. Regulations can be seen as a set of rules/spec-
ifications and a key element to guarantee their effective
enforcement is to assess the conformity of the procedures
and artifacts they intend to regulate. However, the confor-
mity assessment procedures are worthless if the correctness,
completeness and consistency of the specifications are not
established. Standards and recommended practices are usu-
ally written in natural language in order to be easily un-
derstood and adopted by a large number of stake-holders.
Nevertheless, the normative documents are generally of vo-
luminous size, ambiguous and often open to interpretation.
Moreover, it is very difficult to automatically process nat-
ural language documents in search for inconsistencies. All
these problems highlight the lack of a formal drafting pro-

cess and this is where modeling techniques can help. Recent
work [4] has shown that there is an increased interest in pro-
viding automated and systematic support to reason about
regulations due to the growing complexity of safety and se-
curity requirements.

In this paper, we report on our experience of a 4 year
study, which consists in building and analyzing the formal
models of two standards related to airport security: the first
one is the international standard Annex 17 [8], produced
by the International Civil Aviation Organization (ICAQO),
an agency of the United Nations; the second one is the Eu-
ropean Directive Doc 2320 [6], produced by the European
Civil Aviation Conference (ECAC) and which is supposed
to refine the Annex 17 at the European level. This for-
malization was realized using the Focal [7] environment,
within the framework of the EDEMOI' [5] project. The
EDEMOI project aims to integrate and apply several re-
quirements engineering and formal methods techniques to
analyze regulations in the domain of airport security.

In this project, we achieved several contributions. First,
the formalization of the two standards (previously men-
tioned) allowed us to improve the quality of the normative
documents and hence to increase the efficiency of the con-
formity assessment procedure. Second, thanks to this sig-
nificant formalization, it was possible to validate the design
features as well as the reasoning support offered by Focal.
The specification environment was also extended to pro-
vide an appropriate level of documentation for the formal
models. This extension mainly supports the production of
a graphical documentation for Focal specifications in the
form of UML class diagrams. The documentation is in-
tended to be used by developers, and in the long-term, to
facilitate discussions with certification authorities.

'The EDEMOI project is supported by the French National “Action
Concertée Incitative Sécurité Informatique”.

This paper is organized as follows: first, Section 2 pro-
vides a quick overview of the Focal environment; next, Sec-
tions 3 and 4 present respectively the formal models of the
two standards seen previously and their corresponding vali-
dation; Section 5 describes the extension of Focal which al-
lows us to produce UML models for documentation; finally,
Section 6 summarizes the lessons that could be drawn from
the analysis, formalization and validation of the regulations
considered.

2 The Focal Environment

Focal [7], initiated by T. Hardin and R. Rioboo, is a
language in which it is possible to build certified applica-
tions step by step, going from abstract specifications, called
species, to concrete implementations, called collections.
In this language, the first major notion is the structure of
species, which corresponds to the highest level of abstrac-
tion in a specification and which has the following syntax:

species <name> =

rep [= <type >]; (x abstract/concrete

representation)

sig <name> in <type >; (x declaration x)
let <name> = <body>; (x definition x)

property <name>
theorem <name> :
proof : <proof>;

: <prop>; (% property %)
<prop> (* theorem)

end

where <name> is simply a given name, <type> a type
expression, <body> a function body, <prop> a (first-order)
proposition and <proof> a proof.

Species can be combined using (multiple) inheritance
(which works as expected) and can be parameterized either
by other species or by entities from species. These two fea-
tures complete the previous syntax definition as follows:

species <name> (<name> is <name>,

<name> in <name>, ...)
inherits <name>, <name> (<pars >),
= ... end

where <pars> is a list of <name>, which denotes the
names used as effective parameters. When the parameter
is a species parameter declaration, the “is” keyword is used.
When it is an entity parameter declaration, the “in” keyword
is used.

The other main notion of the Focal language is the struc-
ture of collection, which corresponds to the implementation
of a specification (every attribute must be concrete). The
syntax of a collection is the following:

collection <name> implements <name>
(<pars>) = ... end

The certification of a Focal specification is ensured by
the possibility of proving properties using Zenon, a first-
order automated theorem prover, which is the reasoning
support of Focal.

For further information regarding Focal and, in partic-
ular, for examples of specifications, the reader can refer
to [1,7], as well as to the Focal Web site?.

3 Formal Modeling

This section presents the formal models realized in Fo-
cal for the two standards considered. The entire formaliza-
tion takes about 10,000 lines of Focal code, with in partic-
ular, 150 species and 200 proofs. These models are more
extensively described in [1].

3.1 Annex 17

In regulation modeling, it is important for the formal
models to impose a certain structure that facilitates the
traceability and maintainability of the normative docu-
ments. To achieve this purpose, an analysis is performed
to organize the regulation into an hierarchy of goals. On
one hand, the fundamental security properties are identified
and are decomposed into sub-properties. On the other hand,
a bottom-up approach is considered to determine how the
sub-properties intend to satisfy the fundamental ones. In so
doing, this may unveil any implicit hypotheses that led to
the formulation of the preventive security properties. We
also advocate that by reasoning on the hierarchy obtained,
we can determine the correctness and completeness of the
regulation.

The formal model presented in this subsection is struc-
tured according to the hierarchy of goals established. Each
category of prevention, described in Chapter 4 of An-
nex 17 [8] (the international standard proposed by the
ICAO), is represented by a Focal species named adequately
to ensure traceability. For example, the security proper-
ties related to access control (A17, 4.2) are formalized in
species al 7property4_2. These species are specified by ex-
tending the portion of the domain environment they regu-
late while preserving the dependencies between the security
properties. Moreover, to clearly make a distinction between
the security requirements and the ways/means to implement
them, the security properties are defined as invariants. In
fact, from the formal model produced, it should be possi-
ble to rigorously assess the conformity of the security pro-
cedures implemented by each airport security programme.

’http://focal.inria.fr/.

Each category of prevention is also accompanied by appro-
priate correctness and completeness theorems, which aim
to establish the derivability of the security property decom-
positions involved. Examples of correctness and complete-
ness theorems are given in Section 4. Finally, the overall
validation of Annex 17 is established in species annex17,
where the fundamental security property defined in para-
graph 4.1 of Annex 17 is specified. The general structure
of the Annex 17 model is represented by Figure 1, where
nodes are species and arrows are inheritance relations such
that A «— B means species B inherits from species A.

al7property4_3 al7property4_5 al7property4_4
al7property4_7 holdBaggageEnv

al7property4_2 specialPassengersEnv ordinaryPassengersEnv

airsideEnv

Figure 1. Structure of Annex 17

3.2 Doc 2320

The document structure of Doc 2320 [6] (the European
standard proposed by the ECAC) is mainly organized ac-
cording to the different categories of prevention described
in Chapter 4 of Annex 17. Refinement in Doc 2320 appears
at two levels. At the subject level, the refinement consists
in enriching the characteristics of the existing subjects or
in adding new subjects. At the security property level, ei-
ther new security measures are introduced to sustain some
specific security objectives, or each existing Annex 17 se-
curity measure is made more precise and sometimes more
restrictive. The correctness and completeness of Doc 2320
are determined in the same way as for Annex 17. However,
since Doc 2320 refines Annex 17, an additional verification
is required to show that the security measures it describes
do not invalidate (or are not less restrictive than) the ones
defined in Annex 17. Thus, in addition to correctness and
completeness proofs, another kind of proofs appears, that
are refinement proofs (see Section 4). The model structure
obtained for Doc 2320 is shown in Figure 2, where the Fo-
cal model corresponding to Annex 17 is represented with
dashed nodes.

annex

st)

’\u/7pm,wn-4,4 N 7 al7properyd s N ¢ al7propertyd_3

\

_ holdBaggageEnv

Figure 2. Structure of Doc 2320

4 Validation

In this section, we present the different analyses per-
formed on the formal models produced in order to es-
tablish the correctness and completeness of the Annex 17
and Doc 2320 standards. The corresponding theorems are
proved using Zenon. For more details, the reader can refer
to [2].

4.1 Correctness and Completeness

As stated previously, we may assess the extent to which
the regulation is complete by providing a formal proof for
each security property decomposition obtained. In so doing,
we may reveal either that the regulation conveys sufficient
details to establish each causality relationship, or that some
additional assumptions are required for the corresponding
correctness proofs to be successful. In this context, by cor-
rectness, we mean that the preventive security measures are
sufficient to satisfy the fundamental ones, i.e. a fundamental
security property is implied by its sub-properties; by com-
pleteness, we mean that the preventive security measures
are necessary to establish the fundamental ones, i.e. a fun-
damental security property is no longer satisfied when one
of its sub-properties is omitted.

Example 4.1 (Correctness Proof) As an example, we de-
scribe the correctness theorem established for Property 4.2,
which regulates access control (A17, 4.2). This example
puts in evidence that the Annex 17 regulation is, in a certain
way, not correct since additional assumptions are required
for the proof to be completed. To justify these hidden as-
sumptions, we need to consider how some of the security
properties are formalized in species al 7property4_2:

Property 4.2.1. Property 4.2.1 specifies that access to se-
curity restricted areas must be controlled in order to prevent
unauthorized entry. It is formalized in two steps to properly
characterize the notion of unauthorized entry:

property property_4_2_1la
all area in sra, all s in self,
sra_set ! member
(area, !securityRestrictedAreas (s)) —
sralaccess_controlled (area);

property property_4_2_1b
all area in sra, all s in self,
sra_set ! member
(area, !securityRestrictedAreas (s)) —
sralaccess_controlled (area) —
all p in a_subject,
as_set !member
(p, sralairsideSubjects_in_sra (area)) —
sralaccess_authorized (p, area);

where p is an airside subject, area a security restricted
area and s a particular instance of the regulation modeled
by species al7property4_2.

Property 4.2.3. Property 4.2.3 states that the identity of
all airside subjects must be verified before access is autho-
rized to security restricted areas. It is formalized as follows:

property property_4_2_3 all area in sra,
all p in a_subject, all s in self,
sra_set !member
(area, !securityRestrictedAreas (s)) —
sralaccess_authorized (p, area) —
a_subject!identityVerified (p);

where p, area and s are specified as for Property 4.2.1.

Property 4.2. From the analysis performed on Annex 17,
it is established that Properties 4.2.1 to 4.2.6 may be suffi-
cient to guarantee the satisfaction of Property 4.2. In our
formalization, Property 4.2 is therefore specified as a theo-
rem for which a proof is required:

theorem property_4_2 all p in a_subject,
all a in d_aircraft, all area in sra,
all s in self, all o in obj,
sra_set ! member
(area, !securityRestrictedAreas (s)) —
dep_ac_set ! member
(a, sra!departingAircraft_in_sra (area)) —
lis_unescorted_person_vehicle (p, s)—
obj_set ! member
(o, a_subject!objects_carried (p)) —
obj_set ! member
(o, d_aircraft!onboardObjects (a)) —
d_aircraft!access_authorized (p, a)
and !no_unauthorized_objects (o, s)
proof : ...;

This property states that if an object carried by an airside
subject satisfying predicate is_unescorted_person_vehicle
is introduced on board an aircraft departing from a secu-
rity restricted area, then the airside subject has authorized

access to such aircraft. Moreover, if the object is classified
as dangerous then it is authorized (specified by predicate
Ino_unauthorized_objects).

When attempting to prove the above theorem, we discov-
ered that the following assumptions have to be made for the
proof to be successful:

1. Unescorted persons may access a departing aircraft if
they have their identity verified and their background
checked.

2. Unescorted persons are trustworthy and therefore are
considered not to carry any unauthorized dangerous
objects.

Similar assumptions are required for airside vehicles, but
with subtle differences.

4.2 Doc 2320 : Refinement Theorems

As said in Section 3, since Doc 2320 is supposed to re-
fine Annex 17 at the European level, there is a need to en-
sure that its security properties are not less restrictive than
or do not invalidate their Annex 17 counterparts. In our
context, refinement theorems are therefore correctness the-
orems, but with a more specific nature.

Example 4.2 (Refinement Proof) As an example of a
more restrictive security property, we may consider the
refinement theorem established for Property 4.2.6 of An-
nex 17. At the Annex 17 level, it is stated that only a por-
tion of unescorted persons accessing security restricted ar-
eas has to be screened, while at the Doc 2320 level, screen-
ing is made compulsory for all personnel (D2320, 2.3(a)).
In species d2320property2, Property 2.3(a) of Doc 2320 is
formalized as follows:
property d2320_2_3a all area in sra,
all p in a_staff, all s in self,
sra_set ! member
(area, !securityRestrictedAreas (s)) —

sralaccess_authorized (!upToAs (p), area) —

a_staff!handSearched (p) or

a_staff!walkedThroughMetalDetection (p);

where the following property completes the formaliza-
tion by specifying that hand search and Walk-Through-
Metal-Detection equipment are considered as screening
methods:
property inv_screening : all s in self,
'handSearched (s) or

!walkedThroughMetalDetection (s) —
!'screened (s);

The corresponding refinement theorem is specified in
species d2320property?2 as follows:

theorem refinement_4_2_6
1d2320_2_3a — !property_4_2_6
proof : ...;

5 From Focal to UML

This section presents an extension of Focal, which ap-
peared quite necessary during our formalization and which
aims to provide a graphical documentation of our formal
models for developers. In the long term, the idea is to
provide higher-level views that would be more pertinent to
certification authorities. This extension consists of an au-
tomatic transformation of Focal specifications into UML
class diagrams. The transformation is based on a formal
description for a subset of the UML 2.1 static structure con-
structs. The UML metamodel is also tailored to consider the
semantic specificities of the Focal specification language
(we adopted a profile approach). The corresponding rules
are described in details in [3]. In addition, this transfor-
mation was proved to be sound: the defined profile does not
introduce any inconsistency w.r.t. the well-formedness rules
of the UML metamodel; the UML model obtained from
a well-typed Focal specification satisfies both the well-
formedness rules of the UML metamodel and the constraints
within the profile. Figure 3 shows the UML model obtained
from an excerpt of the formalization realized for airport se-
curity regulations and which concerns cabin persons.

CbT - Class
Chself ; Class
«lss Cb : Class == CabinBaggage=ChT,ChSelf>
T Class
Tself ; Class
Speciess
= cabinperson
Attribute
Operation
cabinPerson_ch () : Cb
makeSelf (x . T) - Tself
getRep (x : TSelf)+ T
+ equal () - TSelf -> TSelf -> Bool
+ identityVerified () : TSelf -> Bool
+ cabinBaggage () : TSelf -> ChSelf

equal_reflexive
{all x in self, lequal(x, x)}

«Implementss
ClT -5 Int, ChSelf -> Bag:Self, Cli - > Bag,
T - Pair <String,Pair <Bag: Self,Bocl> >, TSelf -> CabinPerson_col: Self

<Collections
CabinPerson_col
Attribute
~ uniquelnstance : CahinPerson_col
Eserr
Attribute
- rep : Pair<String, Pair<Bag::Salf Bool> >
peration

Operation
- CabinPerson_col ()
+ instance () : CabinPerson_col
FcabinPerson_cb () : Cb
makeSelf (x : Pair <String, Pair <Bag: Self,Bool> > } : Self
0etRep (% Self) : Pair<String, Pair <Bag::Self,Bool> >
+ equal () : Seff —> Self -> Bool
+ identityVerified () Self -> Bool
+ cabinBaggage () © Self -> Bag:'Self

- Self ()

Figure 3. CabinPerson Classes

6 Lessons Learned

The simple fact of organizing the regulations into a hi-
erarchy of goals helps have a better understanding of the
airport security policy. The formalization of the Annex 17
and Doc 2320 mainly corresponds to a knowledge engineer-
ing task. In particular, to properly capture the meaning of
the identified security properties, it is essential to provide an
appropriate vocabulary, while preserving as far as possible
the nomenclature of the normative documents. The formal

modeling process has mainly served to clarify various ambi-
guities and imprecisions residing in the informal definitions
of the security properties considered, hence improving the
quality of the normative documents.

The correctness theorems proved during the validation
step have served to clarify any remaining imprecision in the
formal models. In essence, by systematically exploring the
hierarchy of goals established, we managed to identify a
set of hidden assumptions (or omissions) that shed light on
the intention of some specific security properties. Regard-
ing the refinement theorems, they allowed us to formally
establish that the Doc 2320 regulation indeed refines An-
nex 17 at the European level. It should be noted that for
some exceptional cases, we needed to adopt specific refine-
ment validation patterns, which we here omit due to space
restrictions. For instance, the omission or partial refinement
of a higher-level security property at the Doc 2320 level is
not necessarily considered as a deficiency of the regulatory
system. It can be the case that the drafter may assume that
any omitted higher-level requirement is considered to be left
unchanged and is still applicable.

References

[1] D. Delahaye, J.-F. Etienne, and V. Viguié Donzeau-Gouge.
Certifying Airport Security Regulations using the Focal En-
vironment. In Formal Methods (FM), volume 4085 of LNCS,
pages 48-63. Springer, Aug. 2006.

[2] D. Delahaye, J.-F. Etienne, and V. Viguié Donzeau-Gouge.
Reasoning about Airport Security Regulations using the Fo-
cal Environment. In International Symposium on Leveraging
Applications of Formal Methods, Verification and Validation
(1SoLA), pages 45-52. IEEE CS Press, Nov. 2006.

[3] D. Delahaye, J.-F. Etienne, and V. Viguié Donzeau-Gouge.
Producing UML Models from Focal Specifications: An Ap-
plication to Airport Security Regulations. In Theoretical As-
pects of Software Engineering (TASE). IEEE CS Press, June
2008.

[4] R. Laleau and M. Lemoine, editors. International Workshop
on Regulations Modelling and their Validation and Verifica-
tion (REMO2V), in conjunction with Conference on Advanced
Information Systems Engineering (CAiSE). Presses Universi-

taires de Namur, June 2006.

[5] The EDEMOI Project, 2003.
http://www-1lsr.imag.fr/EDEMOI/.

[6] The European Civil Aviation Conference. Regulation (EC)
N°2320/2002 of the European Parliament and of the Council
of 16 December 2002 establishing Common Rules in the Field
of Civil Aviation Security, Dec. 2002.

[7]1 The Focal Development Team.
CNAM/INRIA/LIP6, May 2005.
Available at: http://focal.inria.fr/.

[8] The International Civil Aviation Organization. Annex 17 to
the Convention on International Civil Aviation, Security -
Safeguarding International Civil Aviation against Acts of Un-
lawful Interference, Amendment 11, Nov. 2005.

Focal, version 0.3.1.

